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Abstract We study the effect of the squeeze operator on the finite pair-coherent state. The
state is a type of a correlated two-mode state in finite dimension based on the resonant ion-
cavity interaction. We have discussed some statistical properties for such state, especially
the quadrature variances as well as the second-order correlation function. Furthermore we
have also considered the variance in the photon number sum and difference in addition to
the linear correlation function. It is shown that the strong correlation occurs for a large value
of the photon number difference. Our discussion is extended to include the quasiprobability
distribution functions (W -Wigner and Q-functions). In the meantime we have considered the
quadrature distribution function and phase distribution. It has been shown that the squeezed
finite pair coherent state is sensitive to the variation in the state parameter, ξ and the squeeze
parameter, r , as well as the q parameter which in fact plays a crucial role of controlling the
behavior of the system.

Keywords Nonclassical state · Squeezing phenomenon · Quasi distribution functions

1 Introduction

Recently a new nonclassical state of electromagnetic field was generated by using the com-
petition of four-wave mixing and two-photon absorption in a nonlinear medium. The state
is known as pair coherent state and defined as the eigenstate of two operators [1, 2]

â1â2|μ,q〉 = μ|μ,q〉, (n̂1 − n̂2)|μ,q〉 = q|μ,q〉, (1.1)
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where â1 and â2 are the annihilation operators of the field modes, n̂i = â
†
i âi , i = 1,2, is

the field photon number while q is an integer while μ a complex number. Another scheme
to generate such state is to generate a vibrational pair of coherent states via the motion
of a trapped ion in a two-dimensional trap [3]. In the meantime there is another kind of
the nonclassical state of electromagnetic field which can be generated using a trapped-ion
system, see for example [4]. The state is called a finite dimensional pair-coherent states
(FPCS) and is given by

|ξ, q〉 = Nq

q∑

n=0

ξn

√
(q − n)!

q!n! |q − n,n〉, (1.2)

where ξ is a complex variable (the state parameter) and q is a positive integer (the difference
between the sum of the photon numbers) while Nq is the normalization constant given by

Nq =
[ q∑

n=0

|ξ |2n (q − n)!
q!n!

]− 1
2 = [1F0(−q,−|ξ |2)]− 1

2 (1.3)

which 1F0(.) being a generalized hypergeometric function. It would be pointed out that the
derivation of the state is analogous to the usual pair coherent state. This can be seen from

the state definition which is the eigenstate of the pair operators (â
†
1 â2 + (â1 â

†
2ξ)q

(q!)2 ξ) for the
two modes and the sum of the photon number operators for the two modes, namely

(
â

†
1 â2 + (â1â

†
2ξ)q

(q!)2
ξ

)
|ξ, q〉 = ξ |ξ, q〉,

(â
†
1 â1 + â

†
2 â2)|ξ, q〉 = q|ξ, q〉. (1.4)

In fact this state has been used by two of the authors in their study of the entropy and vari-
ance squeezing for two coupled oscillators in interaction with a two-level atom [5]. Among
many of the nonclassical states of light introduced in the literature one can see the present
FPCS has the expansion in the number (Fock) states |n1, n2〉 of the two modes as fundamen-
tal basis. This is due to the concept of the photon in the quantum theory of the radiation field
which is essentially based upon the number state. Therefore, the possibility of generating
appropriate squeezed states corresponding to such (number) state is worth considering for at
least its fundamental importance [6–8]. This means that the input field in a squeezing device
may be generally considered as a superposition of number states rather than a vacuum state
or a coherent state, where the last two states are limiting cases of the squeezed state. In fact
this has encouraged many authors to examine the effect of squeezing on different kinds of
states such as number state [9–11], thermal field state [12, 13], generalized binomial state
[14] and nonlinear binomial state [15]. In the present communication we discuss the effect
of the two-mode squeezing operator Ŝ(r) (correlated squeezing operator) on finite dimen-
sional pair-coherent state FPCS. The correlated squeezing operator is essentially generated
from the evolution operator of the interaction part of the parametric amplifier model and is
given by [16]

Ŝ(r) = exp[r(â†
1 â

†
2 − â1â2)], r > 0, (1.5)

where r is the squeezing parameter and â
†
i (âi ), i = 1,2, are the creation and annihilation

operators satisfying the commutation relation [âi , â
†
j ] = δij = 1 if i = j and zero otherwise.
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The squeezed finite-dimensional pair-coherent state (SFPCS) is obtained when one acts by
the squeezing operator Ŝ(r) on the state given by the (1.2). Thus

|r, ξ, q〉 = Ŝ(r)|ξ, q〉. (1.6)

Such a state can be generated by applying the Hamiltonian representing the parametric
down-conversion of a single photon from a strong field (that can be described classically)
onto only two nondegenerate photon on the input state (1.4).

In what follows we discuss some statistical properties of this state and therefore we de-
vote Sect. 2 to consider the normal squeezing and the Glauber second-order correlation func-
tion. We also discuss the variance of the photon number sum and difference in addition to the
linear correlation function. In Sect. 3 we consider the quasiprobability distribution functions,
more precisely W -Wigner and Q-function. This is followed by Sect. 4 which is devoted to
discuss the probability and phase distribution. Finally we give our conclusion in Sect. 5.

2 Nonclassical Properties

To discuss the nonclassical properties of the squeezed finite-dimensional pair-coherent state
SFPCS we consider two different phenomena. The first is the squeezing phenomenon which
can be quantified via the quadrature variances for the normal squeezing case while the sec-
ond phenomenon is Poissonian and sub-Poissonian behavior which can be measured using
the Glauber second-order correlation function. As is well known, the squeezing means re-
duction in the noise of an optical signal below the vacuum limit, in addition to the pos-
sibility of potential applications in optical detection in communications networks of grav-
itational waves [17–22]. Therefore to discuss the squeezing phenomenon we have to cal-
culate the Hermitian quadrature variances, X̂ and Ŷ , which are related to the conjugate
electric and magnetic field Ê and Ĥ . These quadrature operators satisfy the commutation
relation [X̂, Ŷ ] = iĈ, where Ĉ may be an operator or C-number depending upon which
kind of squeezing we want to discuss. In order to facilitate our discussion we consider the
superposition-mode quadrature phases given by [16]

X̂ = 1

2
[(â1 + â

†
1) − {â2 exp(iφ) + â

†
2 exp(−iφ)}],

Ŷ = i

2
[(â†

1 − â1) − {â†
2 exp(−iφ) − â2 exp(iφ)}],

(2.1)

where φ is arbitrary phase. To do so we have calculated the expectation values of the photon
numbers which give us

〈â†
1 â1〉 = q + (1 + q) sinh2 r − N2

q

q∑

n=1

|ξ |2n (q − n)!
q!(n − 1)! ,

〈â†
2 â2〉 = (1 + q) sinh2 r + N2

q

q∑

n=1

|ξ |2n (q − n)!
q!(n − 1)! .

(2.2)

In the meantime we find 〈â1〉 = 〈â2〉 = 0. Therefore the quadrature variances for the
SFPCS are given by

〈(�X̂)2〉 = 1

2
(q + 1)(cosh 2r − cosφ sinh 2r),

〈(�Ŷ )2〉 = 1

2
(q + 1)(cosh 2r + cosφ sinh 2r).

(2.3)
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As one can see the fluctuations in X̂ may be squeezed below the vacuum level of 1
2

for φ ∈ [0,π/2), while the fluctuations in Ŷ are enhanced by the correlations. Further, if the
phase φ is changed to the range φ ∈ (π/2,π ], the squeezing occurs in the second quadrature.
The effect of the parameter q in this case is just to increase or decrease the amount of the
squeezing while the effect of the parameter ξ is absent.

However, for the case in which φ = π/2, the phenomenon of squeezing disappeared from
the quadrature variances where,

〈(�X̂)2〉 = 〈(�Ŷ )2〉 = 1

2
(q + 1) cosh 2r.

Thus we may conclude that, the phenomenon of squeezing occurs for φ ∈ [0,π] except
at φ = π/2 where both quadratures are equal.

As a second example of the nonclassical effect we introduce in this paper the correlation
function

g
(2)
i (ξ) = 1 + 〈(�n̂i)

2〉 − 〈n̂i〉
〈n̂i〉2

, i = 1,2. (2.4)

To discuss the Glauber second-order correlation function we have to calculate the second
moment of the photon numbers. For the first mode we find

〈(â†
1 â1)

2〉 = N2
q

q∑

n=0

|ξ |2n (q − n)!
q!n!

[
(q − n)2 cosh4 r + (n + 1)2 sinh4 r

+
{(

n + 1

2

)
(q − n) + 1

4
(q + 1)

}
sinh2 2r

]
(2.5)

and for the second mode we have

〈(â†
2 â2)

2〉 = N2
q

q∑

n=0

|ξ |2n (q − n)!
q!n!

[
n2 cosh4 r + (q − n + 1)2 sinh4 r

+
{
n

(
q − n + 1

2

)
+ 1

4
(q + 1)

}
sinh2 2r

]
. (2.6)

In Fig. 1 we have displayed the behavior of the correlation function for each mode against
the parameter ξ for different values of r and q parameters. For example in Fig. 1a we ex-
amine the behavior of the correlation function for a fixed value of the parameter q = 5 and
different values of the squeeze parameter r. In this case we observe that the function shows
sub-Poissonian behavior for a small value of ξ. However, it changes its trend to show super-
Poissonian behavior and to reach its maximum within short range of ξ . This behavior can
be seen for different values of the squeeze parameter r . However, it is more pronounced
for a small value of r especially at r = 0.1, where thermal distribution can be reported.
This phenomenon cannot be seen for the other two values, r = 0.2 and r = 0.5. In these
two cases we can realize that the correlation function reduces its maximum without show-
ing sub-Poissonian or even Poissonian distribution. On the other hand we have plotted the
function for a fixed value of the squeeze parameter, r = 0.5, but for different values of the q-
parameter. In this case we can observe that the function starts with sub-Poissonian behavior
and after a small range of ξ it shows super-Poissonian behavior. In fact the function shows
sub-Poissonian behavior with a minimum value for q = 5, while it exhibits super-Poissonian
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Fig. 1 The autocorrelation function g(2)(0) for different values of the involved parameters as indicated:
(a) and (b) for the first mode and (c) and (d) for the second mode

behavior with a maximum value for q = 15, see Fig. 1b. This means that an increase in the
value of the q-parameter leads to an increase in the range of the parameter ξ , where sub-
Poissonian behavior occurred, besides an increase in the height of the peak and a shift to
higher ξ . It is also noted that the general behavior of the function in this case is nearly simi-
lar to that of the previous case, however, for different values of the parameters. The situation
is greatly changed when we consider the correlation function for the second mode. In this
case and contrary to the first mode the function starts with super-Poissonian behavior with
an increase in its peak value. It is easy to realize that the function is then reduced in its value
quite drastically showing sub-Poissonian, which is pronounced for a small value of r = 0.1.
It is also noted that for all values of the squeeze parameter r the correlation function does
not return to show super-Poissonian behavior whatever the range of the parameter ξ , see
Fig. 1c. Also we have examined the correlation function against ξ for a fixed value of the
squeeze parameter, namely r = 0.5. In this case we observe that for different ranges of ξ the
function exhibits super-Poissonian behavior. However, the maximum value of the function
depends upon the value of the q parameter considered, see Fig. 1d. In the meantime we can
see sub-Poissonic behavior starts to appear for the case in which q = 5, followed by the
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other two cases q = 10 and 15, respectively. Finally we report that the correlation function
in this case reaches its maximum for q = 15 and its minimum for q = 5. This means that
an increase in the photon number leads to an increase in the correlation function value and
hence the classical effect would be pronounced.

Now we extend our discussion to include the intensities in the two modes. This can be
achieved if one obtains the expression of the variance of the photon number difference and
sum. Using the above given equations of the expectation values we have

�(â
†
1 â1 − â

†
2 â2)

2 = 4

[
N2

q

q∑

n=0

|ξ |2n (q − n)!
q!n! n2 −

(
N2

q

q∑

n=0

|ζ |2n (q − n)!
q!n! n

)2]
,

�(â
†
1 â1 + â

†
2 â2)

2 = N2
q

q∑

n=0

|ξ |2n (q − n)!
q!n! [2n(q − n) + (q + 1)] sinh2 2r.

(2.7)

It is easy for one to compare between the present case and the case of the usual squeezed
vacuum-state case. In fact there is an essential difference between the two cases. This can
be seen when we measure the photon-number difference. For the squeezed vacuum-state the
zero variance is a result of the correlation between the modes. However, for the squeezed
finite pair coherent state the result is equal to four times the expectation value of the mean
photon number for the first mode. In Fig. 2a we have plotted the photon-number difference
against the parameter ξ for different values of q (q = 5,10,15). As one can see, the function
shows Gaussian behavior with an increase in its peak value as q increases. In the meantime
the function shifts its position in the direction of increasing ξ . This behavior is valid what-
ever the value of the squeeze parameter r . On the other hand for the photon-number sum the
situation is also different where the non zero value of this quantity (which is the signature of
the intensity of photon-number correlations between the modes) is sensitive to any variation
in both q and r parameters. This can be seen in Figs. 2b, 2c in which we have plotted the
photon number sum against the parameter ξ for two different cases. In the first case we have
considered the parameter q = 5 but with different values of the parameter r. For a small
value of the squeeze parameter, r = 0.1, the variance is slightly increased in its value and
then it returns to decrease it for a large range of ξ. However, when we consider r = 0.2,

the variance increased its value nearly three times for the same interval of ξ, then it returns
again to show a behavior similar to that of the previous case. When we take the squeeze pa-
rameter r = 0.4, the value of the variance increased rapidly by nearly five times the case in
which r = 0.2. In the mean time there is no change in the general behavior of the function,
see Fig. 2b. In the second case and for fixed value of the squeeze parameter, r = 0.4, we can
see an increase in the maximum value of the function as the q parameter increases. Also we
note a shift to the right towards higher values of ξ. However, the function shows asymptotic
behavior for large values of ξ, see Fig. 2c.

Now we turn our attention to consider the linear correlation function defined by

L(n1, n2) = 〈n1n2〉 − 〈n1〉〈n2〉√〈(�n1)2〉〈(�n2)2〉 , (2.8)

where the quadrature variances 〈(�ni)
2〉, i = 1,2, can be obtained from (2.2), (2.5) and

(2.6). In Fig. 2d we have plotted the linear correlation function against the parameter ξ for
different values of q (q = 1,2,3) and a fixed value of the squeeze parameter, r = 1. In this
case the functions have different values, each one depends upon the value of the q parameter
and follows the relation L(n1, n2) = q2. This can be realized from Fig. 2d. This indicates that



Int J Theor Phys (2011) 50: 181–199 187

Fig. 2 The variance of the photon number difference and sum as well as the linear correlation for different
values of the involved parameters as indicated: (a) The photon number difference for different value of q and
fixed value of r . (b) The photon number sum for fixed value of q and different values of r . (c) The photon
number sum for fixed value of r and different values of q . (d) The linear correlation for fixed value of r and
different values of q

for a large value of q the two modes are strongly correlated. However, this high correlation
only occurs for a small value of ξ. Increasing the value of ξ leads to anticorrelation which
is firstly observed for q = 1, where the function in this case shows almost constant value.
This is not the case for q = 3 and 5 where the function continue to decrease its value as ξ

increases. We have also examined the effect of the squeeze parameter (not displayed here)
on the linear correlation function assuming that r = 0.1,0.2,0.3 and q = 3. In this case
similar behavior to that of the previous case can be reported. However, only one difference
can be mentioned in this case. After the interval of strong correlation the function starts to
show anticorrelation which gets more pronounced as the value of both r and ξ increases.
Therefore, it is concluded that the correlation between the modes can be controlled by a
judicial choice of the parameters of the state especially the parameter ξ in addition to r

and q .
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3 Quasiprobability Distribution

In this section we consider the quasiprobability distribution functions. These well-known
functions are P -representation, W -Wigner and Q-function and are regarded as important
tools to provide insight into the nonclassical features of the radiation fields. In fact they
have advantages connected with their use. As a part of the advantages of the Wigner func-
tion may become negative for some quantum states, it has the considerable advantage for
squeezed states that its contour maps the variances in the field quadratures. The Q-function
is a positive-definite quasiprobability distribution, but its simple relation to antinormal op-
erator products makes it difficult to interpret in terms of conventional photon counting or
squeezing measurements. They are defined by taking the Fourier transforms of their respec-
tive characteristic functions:

I (α,β, s) = 1

π4

∫ ∞

−∞
d2ζd2η exp(αη∗ − α∗η) exp(βζ ∗ − β∗ζ )C(ζ, η, s), (3.1)

where C(ζ,η, s) is the s-parameterized characteristic function with the parameter, s =
1,0,−1 corresponding to P -representation, W -Wigner and Q-function, respectively. The
s-parameterized characteristic function is evaluated through the relation

C(ζ,η, s) = Tr

{
ρ̂ exp(â

†
1η − â1η

∗) exp(â
†
2ζ − â2ζ

∗).

× exp

[
s

2
(|η|2 + |ζ |2)

]}
, (3.2)

whereas ρ̂ is the density matrix which is given for the squeezed finite dimensional pair-
coherent state by

ρ̂ = |r, ξ, q〉〈r, ξ, q|. (3.3)

In what follows we consider the W -Wigner and the Q-function by evaluating the inte-
gral in (3.1) for s = 0 and s = −1, respectively. This can be achieved if one calculates the
characteristic function C(ζ,η, s). When s �= 0, we have the expression

C(ζ,η, s) = exp

[
−1

2
(|ζ |2 + |η|2)(cosh 2r − s) + 1

2
(ζη + ζ ∗η∗) sinh 2r

]

× N2
q

{
q∑

n=0

(q − n)!
q!n! |ξ |2nLn(|η̄|2)L(q−n)(|ζ̄ |2)

+
q∑

n,m=0
n>m

[
(q − n)!

q!m! ξnξ ∗m

(
η̄

ζ̄

)m−n]
L(m−n)

n (|η̄|2)L(n−m)

(q−n) (|ζ̄ |2)
}

, (3.4)

where Ls
n(x) are the well-known Laguerre polynomials given by

L(γ )
n (x) =

n∑

k=0

(−1)kxk(n + γ )!
k!(n − k)!(k + γ + 1)

, γ = 0,1,2, . . . , (3.5)

and

ζ̄ = ζ cosh r − η∗ sinh r, η̄ = η cosh r − ζ ∗ sinh r. (3.6)
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It should be noted that the diagonal part of the characteristic function C(ζ,η, s) is not
normalized quantity. Having obtained the characteristic function we are therefore in a posi-
tion to find W -Wigner and Q-functions. This is done in the following subsections.

3.1 Wigner Function

To obtain the Wigner function we have to insert (3.4) into (3.1) and perform the integral. In
this case we have for s = 0 the Wigner function in the form

W(α,β, r) = 4 cosπq

π2
N2

q exp[−2(|ᾱ|2 + |β̄|2)]

×
{

q∑

n=0

(q − n)!
q!n! |ξ |2nLn(4|ᾱ|2)L(q−n)(4|β̄|2)

+ 2
q∑

n,m=0
n>m

[
(q − n)!

q!m! ξnξ ∗m

∣∣∣∣
β̄

ᾱ

∣∣∣∣
(n−m)]

L(m−n)
n (4|ᾱ|2)

×L
(n−m)

(q−n) (4|β̄|2) cos[(θ̄ + φ̄)(n − m)]
}

, (3.7)

where ᾱ and β̄ are the eigenvalues of the squeezed coherent states given by

ᾱ = α cosh r − β∗ sinh r, β̄ = β cosh r − α∗ sinh r, (3.8)

while θ̄ and φ̄ are the phase angles of ᾱ and β̄ , respectively.
From (3.7) we can deduce that the diagonal form of the Wigner function takes the ex-

pression

W(α,β, r) = 4 cosπq

π2
N2

q exp[−2(|ᾱ|2 + |β̄|2)]

×
q∑

n=0

(q − n)!
q!n! |ξ |2nLn(4|ᾱ|2)L(q−n)(4|β̄|2). (3.9)

In Fig. 3 we have plotted the diagonal case of the Wigner function against x = Reα and
y = Imα for different values of β and ξ besides q and r parameters. In general the function
shows behavior in which the negative values appear, reflecting nonclassical effects. How-
ever, its shape varies as we change the values of the parameter. As a result of the appearance
of the factor cosπq in (3.9) it is expected that, the function would show a negative peak at
the origin for odd q and show a positive peak for even q . For example, when we consider the
case in which r = β = ξ = 0.1 and q = 5, the function shows oscillations around the center
with a sharp peak downwards at the middle of the base showing negative value, see Fig. 3a.
However, when we increase the value of the q parameter (q = 10) without changing the
other parameter values, different behavior to the previous case can be observed. The main
difference between the two cases is that; we observe a wide base with an increase in the
oscillations around the center, while the sharp peak changes its direction to be upwards at
the middle of the base showing positive-valued peak, see Fig. 3b. This behavior is expected
from the structure of the function given by (3.9), where the existence of the sinusoidal func-
tion is apparent as mentioned above. Thus we can conclude that increasing the value of the
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Fig. 3 The Wigner function in the diagonal case for different values of the involved parameters as indicated

parameter q leads to a reduction in the nonclassical by negative values. On the other hand,
when we take the value of the squeeze parameter r = 0.5, the nonclassical effect gets more
pronounced where the function shows reduction in its oscillations besides a shrinking in
its base toward the center, see Fig. 3c. To examine the behavior of the function at different
values of β we have increased its value from 0.1 to 0.5. In this case we observe the function
losing the symmetry around the center. Also there is a shrinking of the peak from −0.4 to
−0.2, see Fig. 3d. This means that an increase in the value of the coherent variable β means
departing from the center, which leads consequently to decrease in the nonclassical effect.
This may be attributed to the exponential factor exp(−2|β|2) appearing in the expression for
the Wigner function. To examine the effect of the ξ parameter on the Wigner function we
have considered the case in which ξ = 0.5. In this case we have observed that there is no
substantial change in the behavior of the function and the shape of the function is similar to
that of Fig. 3a with the parameters as previously fixed.

We now turn our attention to examine the behavior of the Wigner function when the off-
diagonal terms are taken into account. For this reason we have plotted the function against
x = Reα and y = Imα for different values of β, as well as for the parameters ξ, q and r ,
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Fig. 4 The Wigner function in the off-diagonal case for different values of the involved parameters as indi-
cated

see Fig. 4. In Fig. 4a we display the function for the case in which r = β = ξ = 0.1 and
q = 5 where one can see a peak goes off from a flat base with a hole at the center. The
peak gets sharper as its value decreases where it shows negative value with minimum at
−0.5. This in fact reflects the nonclassical behavior of the state in presence of the squeeze
parameter. Increasing the value of the parameter q leads to a reduction in the nonclassical
behavior, where the peak changes its direction upwards showing positive values for even q .
Although the effect of the squeezing gets weak, we can see a very thin negative peak at the
center of the base, see Fig. 4b. A dramatic change can be seen when we increase the value
of the squeeze parameter, r = 0.5. In this case the base shrinks around the center and the
negative value of the peak gets pronounced, see Fig. 4c. The opposite behavior for Fig. 4c
can be seen in Fig. 4d for the case in which β = 0.5, where the effect of the squeezing
is slightly apparent. This means that the effect of the coherent variable β is stronger than
the effect of the squeeze parameter and consequently the nonclassical behavior is almost
obliterated.
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3.2 The Q-function

A second task of the present section is to consider the Q-function. In what follows we restrict
ourself with the diagonal terms and therefore we have to evaluate the integral

Q(α,β, r) = 1

π4

q∑

n=0

(q − n)!
q!n! |ξ |2n

×
∫ ∞

−∞
d2ζ̄ d2η̄ exp[(ζ̄ ∗β̄ − ζ̄ β̄∗) + (η̄∗ᾱ − η̄ᾱ∗)]

× exp

[
−

(
(|η̄|2 + |ζ̄ |2) cosh2 r + 1

2
(η̄ζ̄ + η̄∗ζ̄ ∗) sinh 2r

)]

× Ln(|η̄|2)L(q−n)(|ζ̄ |2). (3.10)

After a lengthy but straightforward calculation we have the expression

Q(α,β, r) = sech2r

π2
exp[−(|ᾱ|2 + |β̄|2) + (ᾱβ̄ + ᾱ∗β̄∗) tanh r]

× N2
q

q∑

n=0

(q − n)!|ξ |2n

22nq!n!
n∑

k=0

m∑

s=0

(−)(k−s)(2k)!(2m − 2s)!
k!s!(n − k)!(m − s)!

× [(β̄ + β̄∗) tanh r − (ᾱ + ᾱ∗)]2(n−m)(2 tanh r)2(k−s)

×
(

1

2

[(ᾱ + ᾱ∗) coth r − (β̄ + β̄∗)]
[(β̄ − β̄∗) + (ᾱ − ᾱ∗) tanh r]

)2(s−k)

× L
2(k−s)

2s (u)L
(2n−2k)−(2m−2s)

(2m−2s) (v), m = (q − n), (3.11)

where

u(α,β) = 1

2
[(ᾱ∗ − ᾱ) coth r + (β̄∗ − β̄)][(ᾱ − ᾱ∗) tanh r + (β̄ − β̄∗)],

v(α,β) = 1

2
[(ᾱ + ᾱ∗) tanh r − (β̄ + β̄∗)][(ᾱ + ᾱ∗) coth r − (β̄ + β̄∗)].

(3.12)

As a special case, if we consider the squeeze parameter r = 0, the Q-function reduces to
the form

Q(α,β, r) = N2
q

π2
exp[−(|α|2 + |β|2)]

q∑

n=0

|ξ |2n

q!(n!)2
|α|2(q−n)|β|2n. (3.13)

It should be noted that the Q-function can also be obtained from the equation

Q(α,β, r) = 1

π2
|〈α,β|ξ, q, r〉|2 (3.14)

and in this case we have the expression

Q(α,β, r) = N2
q

π2q! exp[−(|α|2 + |β|2) + (αβ + α∗β∗) tanh r]

×(sech r)2(q+1)|G(α,β, r)|2, (3.15)
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where

G(α,β, r) =
q∑

n=0

min(n,q−n)∑

l=0

ξn (q − n)! tanhn r cosh2l r

l!(q − n − l)!(n − l)! (α∗)(q−n−l)(β∗)n−l . (3.16)

It is clear from (3.11) that the Q-function has a complicated expression from which we
are not able to analyze its shape. To tackle this situation we have to make some numerical
computations and plot some figures to display its behavior for different values of the para-
meters involved. Some details of behavior can be seen if the function is plotted against Reα

and Imα for some different values of β and ξ as well as for the parameters q and r . This
has been done in Fig. 5 in which we can see in the absence of the squeeze parameter r and
for β = ξ = 0.1 and q = 3 that the function has a doubly folded peak in the center towards
the positive side. This means that the Q-function shows Fock-state behavior, see Fig. 5a. To
study the effect of the squeezing on the Q-function we set the parameter r = 0.1. In this
case the radius of the base decreases and two opposite sides of the rim are increasing, see
Fig. 5b. Increasing the squeezing parameter to r = 0.15, leads to an increase in the rim sides,
see Fig. 5c. When we examine the effect of the q parameter and consider β = ξ = r = 0.1
while q = 5, we observe that the doubly folded peak greatly decreases its value while its
base widens. This indicates that the effect of the q parameter becomes stronger than the
effect the squeeze parameter r . Finally we examine the behavior of the function at a fixed
value of β that represents the coherent field. In this case and for β = 0.5 we observe a
breaking of the symmetry of the function where one side of the base rim increases corre-
sponding to a decrease in the other side. Also we realize that there is a slight reduction in
the Q-function height. This can be seen from the appearance of the factor exp(−|β|2) in
the expression for the Q-function which reduces the height of the function. However, the
effect of the squeeze parameter still survives beside the appearance of the asymmetry, see
Fig. 5e.

4 The Quadrature and Phase Distribution Functions

In this section we wish to examine the behavior of the quadrature distribution func-
tion as well as the phase distribution functions against the parameters involved. To reach
our goal we have to employ the Wigner function W(α,β, r) given by (3.9), where
we restrict our treatment to the diagonal terms. This is achieved in the next subsec-
tions.

4.1 The Quadrature Distribution Function

To calculate the quadrature distribution function P (x, y, r) we have to integrate the function
W(α,β, r) over the imaginary variable for both α and β , such that [15, 23, 24]

P (x, y, r) =
∫ ∞

−∞
W(α,β, r)d Imαd Imβ. (4.1)

In this case if we insert (3.9) into (4.1) and after a straightforward calculation,we find
that the distribution function P (x, y, r) takes the form
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Fig. 5 The Q-function in the diagonal case for different values of the involved parameters as indicated
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Fig. 6 The distribution function P(x, y, r) in the diagonal case for different values of the involved parame-
ters as indicated

P (x, y, r) = 2

π
N2

q

q∑

n=0

2−q |ξ |2n

q!(n!)2
H 2

(q−n)(
√

2x̄)H 2
n (

√
2ȳ)

× exp{−2[(x2 + y2) cosh 2r − 2xy sinh 2r]}, (4.2)

where

x̄ = x cosh r − y sinh r, ȳ = y cosh r − x sinh r. (4.3)

In Fig. 6 we have plotted the distribution function P (x, y, r) against x for different values
of the parameters involved. For instance we examine the function’s behavior for a fixed value
of y = 0, q = 2 and ξ = 0.1. In this case and for different values of the squeezing parameter,
r, the function has a positive value and shows regular fluctuations with a symmetry around
x = 0. In the meantime the maximum height of the function is exhibited for the case in which
r = 0 at the two outer peaks. We also observe that increasing the value of the squeezing
parameter results in decreasing the amplitude of the function. This is quite obvious for the
cases in which r = 0,0.5 and 1.0, see Fig. 6a. It is also noted that the maximum value
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of the function at r = 0 occurs at shorter distances than for the other two cases. When we
increase the value of the q parameter to q = 5, the number of the oscillations increases while
their amplitude decreases. However, there is no change for the symmetry around x = 0, see
Fig. 6b. Here we may point out that the number of the peaks for all the cases is always
equal to q + 1. Now we turn our attention to consider the effect of the ξ parameter on the
distribution function when we set y = 0, q = 5 and r = 0.5. As one can see from Fig. 6c, the
function for ξ = 0.1 shows regular fluctuations as well as a symmetry around x = 0. Also
it is noted that the heights of the peaks increase until x = 0 is reached. Then they start to
decrease as one moves away. When we increase the value of ξ, for example, ξ = 0.5 the
maximum value of the peak at the beginning and at the end of the interval gets higher than
that for the case in which ξ = 0.1. This behavior gets more pronounced for the case in which
ξ = 0.9. Finally we consider the variation that occurs in the distribution function due to the
change in the real part of the coherent parameter β. In this case and for y = 0.1 the function
starts to increase its value after a certain interval of x with maximum value approximately
around ∼0.05. This value is less than that for the case in which y = 0, see Fig. 6c where
the maximum value occurs at ∼0.075. This is due to the appearance of exp(−2y2) which
amounts to lowering the value of the function. However, the function increases its value
when we consider y = 0.5 and we can not see any increment for the case in which y = 0.9
during the same interval of x. In the meantime the function shows that its maximum for
y = 0.9 is greater than that its maximum for y = 0.5, however, having a shift at the positive
side of x, see Fig. 6d.

4.2 The Phase Distribution

To calculate the phase distribution we have to integrate the function 1
4W(α,β, r) over the

mean photon numbers for each mode. This means that the integration runs over the radius
of the coherent parameters for both fields. However, due to the existence of the term cosπq

in the Wigner function we have to expect a negative value as a part of the phase distribu-
tion. This in addition to the negative value which usually appears due to the nature of the
Wigner function. Therefore to avoid this situation we have to consider the Pegg-Barnett
phase-distribution formalism [25–28]. When one uses the Pegg-Barnett scheme for calcu-
lating the phase properties for a state of a single mode given by |ψ〉 = ∑

cn|n〉, then one
has to use the phase state introduced by

|θm〉 = 1√
s + 1

s∑

n=0

exp(inθm)|n〉, θm = θ0 + 2πm

s + 1
, m = 0,1,2 . . . (4.4)

The phase probability can be written in the form

PPB(θ) = lim
s→0

s + 1

2π
|〈θm|ψ〉|2 = 1

2π

∣∣∣∣
∞∑

n=0

cn exp(inθ)

∣∣∣∣
2

. (4.5)

This can be generalized to include more than one mode. Therefore, for the present case
we have

PPB(θ,φ, r) = N2
q (sech r)2(q+1)

4π2(q!) |J (θ,φ, r)|2, (4.6)

where the function J (θ,φ, r) is given by
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Fig. 7 The phase distribution function for different values of the involved parameters as indicated

J (θ,φ, r) =
q∑

n=0

ξn

min(n,q−n)∑

l=0

∞∑

k=0

C
(q−n)

l

cosπk

k!(n − l)!

× √
(q − n − l + k)!(n − l + k)!(tanh r)k+l cosh2l r

× exp(i(q − n − l + k)θ + i(n − l + k)φ). (4.7)

From the above equation it is not an easy task to see and analyze the behavior of the
function PPB(θ,φ, r). Therefore in Fig. 7 we have plotted the function against the parameter
ξ and the phase angle θ assuming that the other phase angle φ = 0. Before we go further we
observe that for ξ = 0 there is no phase information to be reported. However, as ξ increases
and there is summation of the Fock states then the phase starts to build up. Moreover, for
φ = π the main peak is shifted to the value θ = π , which is not displayed here. In Fig. 7a
we have considered the case in which r = 0.1 and q = 2, where the main peak is centered
around θ = 0 with a symmetrical behavior. Increasing the value of the parameter q , for
example q = 3, leads to the appearance of side peaks. The number of these peaks increases
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by increasing q in a linear way. This is seen from the comparison between Figs. 7a, 7b
and 7c. These peaks start small and gain height as ξ increases until they reach a stationary
value. However, they start to lose height by further increasing the value of ξ, see Figs. 7a
and 7b. On the other hand the squeezing parameter r shows another trend, for example,
when we increase its value such that r = 0.5, see Fig. 7d. In this case the number of the
peaks is unaltered while their heights are reduced. However, the height of the first side peak
is smaller than the second side peak in contrast to the case of Fig. 7b.

5 Conclusion

In the previous sections of the present paper we have examined the effect of the two mode
squeeze operator on the finite-pair coherent state. Our examination included the squeezing
phenomenon for which we find that the parameter q plays a role of increasing and decreasing
the amount of squeezing in each quadrature. Also we examined the second-order correla-
tion function where the system starts with sub-Poissonian behavior in the first mode and
then it turns to be super-Poissonian. However, for the second mode the function starts with
super-Poissonian and then it turns to show sub-Poissonian for large values of r . Also we
managed to deduce the relationship between the linear correlation function and the parame-
ter q from which we can control the amount of the correlation. The nonclassical properties
were pronounced when we examined the quasiprobability distribution function. For exam-
ple, the Wigner function displayed a sharp peak with negative and positive values at the
center which depends on the value of the involved parameters. This is reported for both di-
agonal and off-diagonal cases. The situation was different for the Q-function which shows
a Fock-state behavior. However, the effect of the squeeze parameter was still pronounced.
The quadrature distribution function is also examined and we find the number of the peaks
is always equal to q + 1 with a symmetry around the center. Finally we examined phase-
distribution function using the Pegg-Barnett formalism in which the state parameter ξ and
the squeeze parameter r as well as the q parameter play a crucial role of changing the phase
behavior.
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